
Building a Building a 
ModelModel--Based Test Engine Based Test Engine 

for Dynamic Test for Dynamic Test 
AutomationAutomation

J. Benjamin SimoJ. Benjamin Simo
Ben@Ben@QualityFrog.comQualityFrog.com

Ben_Simo@StandardAndPoors.comBen_Simo@StandardAndPoors.com



2

Software Is Automation

It makes sense to automate 
software testing.

Software helps us do many tasks 
faster, better, and cheaper.

Why does automation seldom deliver 
faster, better, and cheaper 

testing?

www.QualityFrog.com



3

Common
Test Automation Pitfalls
1. Tests are difficult to maintain 

and manage
2. Test results are difficult to 

understand
3. Application changes and bugs can 

prevent tests from completing
4. Tests repeat the same test over 

and over and over and … don’t 
find new bugs

www.QualityFrog.com



4

Common
Test Automation Methods
• Record/Playback 

(1st Generation)
– Anyone can automate tests

• Data Driven Tests
– Repeat test with different data

• Application-Specific Framework
– Reusable components

• Keyword Driven Framework
(3rd Generation)
– Application-independent reusable components
– Separate test definition from script coding

www.QualityFrog.com



5

Why are the promises of test 
automation rarely realized?

Too many automation efforts 
attempt to automate manual 

testing.

Too many testers (and managers) 
think their automated tests do 
the same things a manual tester 

does.

www.QualityFrog.com



6

James Bach’s 
Rules of Test Automation
Rule #1

A good manual test cannot be automated.

Rule #1B
If you can truly automate a manual test, 
it couldn’t have been a good manual test.

Rule #1C
If you have a great automated test, it’s not the same as 
the manual test that you believe you were automating.

Manual Tests Cannot Be Automated
Monday, July 31st, 2006

http://www.satisfice.com/blog/archives/58

www.QualityFrog.com



7

Intelligently Designed Tests
• Testers create scripted test cases from 

mental models of an application’s expected 
behavior at the time of scripting. 

• Testers perform exploratory testing based on 
a tester’s growing mental model of an 
applications expected and actual behavior at 
the time of execution.

What if testers could document their mental 
model and let the computer generate and 

execute tests?

www.QualityFrog.com



8

Artificial Intelligence
Meets Random Selection

• Model behavior instead of scripting 
specific test procedures

• Randomly generate and execute tests 
based on the model

This is Model-Based Testing
^Automated

How do we model behavior?

www.QualityFrog.com



9

Finite State Machine
Behavior model composed of states, 

transitions, and actions
• State: The 

current condition 
that reflects 
past changes 

• Transition: A 
change in state

• Action: Event 
that causes a 
change of state

www.QualityFrog.com



10

Action Table
State transitions and the actions that 

trigger them can be defined in an 
action table

Action StartState EndState
LOCK AlarmDisarmed_AllUnlocked AlarmDisarmed_AllLocked
LOCK AlarmDisarmed_DriverUnlocked AlarmDisarmed_AllLocked
LOCK AlarmDisarmed_AllLocked AlarmDisarmed_AllLocked
LOCK AlarmArmed_AllLocked AlarmArmed_AllLocked
LOCKx2 AlarmDisarmed_AllUnlocked AlarmArmed_AllLocked
LOCKx2 AlarmDisarmed_DriverUnlocked AlarmArmed_AllLocked
LOCKx2 AlarmDisarmed_AllLocked AlarmArmed_AllLocked
LOCKx2 AlarmArmed_AllLocked AlarmArmed_AllLocked
UNLOCK AlarmDisarmed_AllUnlocked AlarmDisarmed_AllUnlocked
UNLOCK AlarmDisarmed_DriverUnlocked AlarmDisarmed_DriverUnlocked
UNLOCK AlarmDisarmed_AllLocked AlarmDisarmed_DriverUnlocked
UNLOCK AlarmArmed_AllLocked AlarmDisarmed_DriverUnlocked
UNLOCKx2 AlarmDisarmed_AllUnlocked AlarmDisarmed_AllUnlocked
UNLOCKx2 AlarmDisarmed_DriverUnlocked AlarmDisarmed_DriverUnlocked
UNLOCKx2 AlarmDisarmed_AllLocked AlarmDisarmed_AllUnlocked
UNLOCKx2 AlarmArmed_AllLocked AlarmDisarmed_AllUnlocked

www.QualityFrog.com



11

State Validation Table
The requirements for each state can be 

defined in a state validation table

State Validation Requirement
AlarmDisarmed_AllUnlocked Alarm is disarmed
AlarmDisarmed_AllUnlocked All doors are unlocked
AlarmDisarmed_DriverUnlocked Alarm is disarmed
AlarmDisarmed_DriverUnlocked Driver door is unlocked
AlarmDisarmed_DriverUnlocked Passenger doors are locked
AlarmDisarmed_AllLocked Alarm is disarmed
AlarmDisarmed_AllLocked All doors are locked
AlarmArmed_AllLocked Alarm is armed
AlarmArmed_AllLocked All doors are locked

www.QualityFrog.com



12

Why aren’t more people 
doing Model-Based Testing?

• Requires a change in 
thinking

• Difficult to create and 
manage large models

• Lack of tools

www.QualityFrog.com



13

Hierarchical State Machine
• Finite state machines can be simplified by 

breaking them down into small pieces
• Most states have hierarchical relationships

– Child (sub) states inherit all attributes of the 
parent (super) state and have additional attributes 
that are specific to the child

www.QualityFrog.com



14

Hierarchical State Machine
Action StartState EndState
LOCK AlarmDisarmed_AllUnlocked AlarmDisarmed_AllLocked
LOCK AlarmDisarmed_DriverUnlocked AlarmDisarmed_AllLocked
LOCK AlarmDisarmed_AllLocked AlarmDisarmed_AllLocked
LOCK AlarmArmed_AllLocked AlarmArmed_AllLocked
LOCKx2 AlarmDisarmed_AllUnlocked AlarmArmed_AllLocked
LOCKx2 AlarmDisarmed_DriverUnlocked AlarmArmed_AllLocked
LOCKx2 AlarmDisarmed_AllLocked AlarmArmed_AllLocked
LOCKx2 AlarmArmed_AllLocked AlarmArmed_AllLocked
UNLOCK AlarmDisarmed_AllUnlocked AlarmDisarmed_AllUnlocked
UNLOCK AlarmDisarmed_DriverUnlocked AlarmDisarmed_DriverUnlocked
UNLOCK AlarmDisarmed_AllLocked AlarmDisarmed_DriverUnlocked
UNLOCK AlarmArmed_AllLocked AlarmDisarmed_DriverUnlocked
UNLOCKx2 AlarmDisarmed_AllUnlocked AlarmDisarmed_AllUnlocked
UNLOCKx2 AlarmDisarmed_DriverUnlocked AlarmDisarmed_DriverUnlocked
UNLOCKx2 AlarmDisarmed_AllLocked AlarmDisarmed_AllUnlocked
UNLOCKx2 AlarmArmed_AllLocked AlarmDisarmed_AllUnlocked

Action StartState EndState
LOCK KeylessEntry.Locked KeylessEntry.Locked.Armed
LOCK KeylessEntry.Unlocked KeylessEntry.Locked.Disarmed
LOCKx2 KeylessEntry KeylessEntry.Locked.Armed
UNLOCK KeylessEntry.Locked KeylessEntry.Unlocked.Driver
UNLOCK KeylessEntry.Unlocked.* KeylessEntry.Unlocked.*
UNLOCKx2 KeylessEntry.Locked KeylessEntry.Unlocked.All
UNLOCKx2 KeylessEntry.Unlocked.* KeylessEntry.Unlocked.*

State Validation Requirement
KeylessEntry.Locked.Armed Alarm is armed
KeylessEntry.Unlocked Alarm is disarmed
KeylessEntry.Locked.Disarmed Alarm is disarmed
KeylessEntry.Locked All doors are locked
KeylessEntry.Unlocked.All All doors are unlocked
KeylessEntry.Unlocked.Driver Driver door is unlocked
KeylessEntry.Unlocked.Driver Passenger doors are locked

www.QualityFrog.com



15

Guarded Transitions
Define some conditions as state variables 

instead of specific sub-states
Action IfTrue StartState EndState
LOCK KeylessEntry.Locked KeylessEntry.Locked.Armed
LOCK KeylessEntry.Unlocked KeylessEntry.Locked.Disarmed
LOCKx2 allDoorsLocked KeylessEntry KeylessEntry.Locked.Armed
LOCKx2 !allDoorsLocked KeylessEntry KeylessEntry.Locked.Disarmed
UNLOCK KeylessEntry.Locked KeylessEntry.Unlocked.Driver
UNLOCK KeylessEntry.Unlocked.* KeylessEntry.Unlocked.*
UNLOCKx2 KeylessEntry.Locked KeylessEntry.Unlocked.All
UNLOCKx2 KeylessEntry.Unlocked.* KeylessEntry.Unlocked.*

www.QualityFrog.com



16

Model-Based Test Engine
(MBTE)

Automation framework that generates 
and executes tests based on a model 

of an application’s behavior

• Can be built on top of existing 
automation scripting tools

• Combines good automation framework 
practices with Model-Based Testing

• Easier to create than complex 
Keyword-Driven Frameworks

www.QualityFrog.com



17

MBTE Benefits
1. Simplified automation creation 

and maintenance
2. Simplified test result analysis
3. Automatic handling of most 

application changes and bugs
4. Generate and execute new tests 

… and find new bugs 
Avoid the Test Automation Pitfalls

www.QualityFrog.com



18

1. Simplified automation 
creation and maintenance
• Create new functions/methods for 

action execution, state validation, and 
results reporting
– Reduce the required scripting vocabulary
– Add features that aren’t native to the tool
– Integrate workarounds for tool issues

• Separate validations from actions
• Define tests with data instead of code
• Automatic validation detection

www.QualityFrog.com



19

2. Simplified test result 
analysis

• Standardize results reporting
– Don’t rely on the tool’s built-in reporting
– Viewing results should not require an 

expensive tool
– HTML, XML, Excel, Database

• Standardize results presentation
• Report enough information to trace 

errors to the application under test 
and the automation code

www.QualityFrog.com



20

3. Automatic handling of
most application changes

and bugs
• Return a pass/fail status from every 

action and validation
• Build error handling into the 

framework instead of defining error 
handling for each test

• Use validations to identify test-
stopping failures

www.QualityFrog.com



21

4. Generate and execute 
new tests … 

and find new bugs
• Random action selection

– Not all tests will be of value 
• Computers don’t mind running tests all night
• Computer hardware costs less than people

• Test data selection
– Random by object class
– From data tables
– Orthogonal Arrays

www.QualityFrog.com



22

Test Components
1. Action Tables

Define actions and the resulting state changes

2. Data-Driven Test Tables
Define test data to be used by the actions

3. State Tables
Define state validation requirements

4. Object Map
Links logical object names to the tool’s method of 

describing UI objects

5. Call Script
Simple script that configures the test and starts 

the MBTE

www.QualityFrog.com



23

Action Table Columns
• memberOf: List of test sets to which the action 

belongs
• testTitle: Short title for the action
• testDetail: Detailed description of the action
• ifTrue: Expression defining data conditions required 

to execute the action 
• startState: Name of the state from which the action 

is possible
• endState: Name of the expected state after 

executing the action
• setupCode: Code to execute prior to performing the 

action
• testCode: Code to execute to perform the action

– actionWindow, actionObject, actionValue, actionSync 

www.QualityFrog.com



24

State Table Columns
• severity: numeric severity value given to the 

requirements
• expectedState: name of the state to which the 

requirement applies
• ifTrue: expression defining any data conditions that 

must be met for the requirement to apply
• expectedResult: description of the requirement
• testCode: code to execute to perform the validation

– testWindow, testObject, testProperty, 
expectedCondition, expectedValue

• failState: state of the application if the validation 
fails

www.QualityFrog.com



25

Basic MBTE Workflow
• Action execution

– For a specified 
period of time

– Test all test set 
actions

• Action selection
– Random
– Weighted-random
– Untested first

www.QualityFrog.com



26

MBTE Components
1. Main Script
2. Result Reporting

result_open, result_message, result_action, result_validation, 
result_close

3. Action Execution
object_set, action_first, action_next, action_do, ddt_action_do

4. State Validation
test_window, test_object, test_table

5. Model-Processing
1. Read model into memory: mbte_action_readTable, 

mbte_state_readTable
2. Link actions and validations: mbte_link_actions, 

mbte_link_validations
3. UML Image Generation: mbte_write_model
4. Select Action: mbte_find_next_action
5. Perform Action: mbte_perform_action
6. Validate Results: mbte_validate_end_state

www.QualityFrog.com



27

Model Processing
1. Read model from tables

– Combine multiple tables into a single model
– Generate action and validation code

2. Link actions and validations
– Link actions to previous and next actions
– Link state validations to end states

3. UML image generation
4. Select action

– Random
– Untested first with look-ahead
– Weighted random

5. Perform action
– Update model based on results (e.g., flag action as not 

available after repeated failures)
6. Validate results

www.QualityFrog.com



28

Issues

• Requires a change in thinking
• No pre-trained staff available

– No vendor training or certification 
for model-based testing

• Different metrics
– How many test cases did a model-

based test run?

www.QualityFrog.com



29

What’s Next?
• Create a MBTE for a load test 

tool
– Multiple users simultaneously 

traversing state models
• Multiple active models

– Start up a new model for threaded 
processes (e.g., web browser popup)

• Automated model generation?
• Your ideas?

www.QualityFrog.com



30

“Essentially, all models are wrong, 
but some are useful.”

“… the practical question is 
how wrong do they have to be to not be 

useful.”
George Box and Norman Draper (1987)

Empirical Model-Building and Response Surfaces,
p 424 and 74

Ben@QualityFrog.com
Ben_Simo@StandardAndPoors.com

www.QualityFrog.com

Happy Modeling


